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Abstract. The Ising system with a small fraction of random long-range interactions is the simplest
example of small-world phenomena in physics. Considering the latter both in an annealed and in
a quenched state we conclude that: (a) the existence of random long-range interactions leads to a
phase transition in the one-dimensional case and (b) there is a minimal average number p of these
interactions per site (p < 1 in the annealed state, and p � 1 in the quenched state) needed for the
appearance of the phase transition. Note that the average number of these bonds, pN/2, is much
smaller than the total number of bonds, N2/2.

1. Introduction

The remarkable paper of Watts and Strogatz on small-world networks [1] has drawn the
attention of many researchers in different fields [2]. Although the idea of the crucial importance
of random long-range connections for the self-organization of a large networks by itself is not
new (one needs ‘six degree of separation’ to connect two randomly chosen people in the USA
[3]), Watts and Strogatz have formulated the quantitative theory of this phenomenon which has
many applications in science including physics. The Ising model can be used to exemplify the
simplest example of the small-world phenomena in physics. The influence of random long-
range interactions on the Ising system with nearest-neighbour interaction is quite different in
the one- and two–three-dimensional cases.

Although two–three-dimensional Ising models are obviously more relevant to physical
systems, even the one-dimensional Ising model with random long-range interactions can be
applied to the description of systems such as magnetic linear polymers where the short-
range interactions between neighbouring monomers in the chain are supplemented by the
random interactions between monomers that are close in space (and not along the chain) [4].
Nevertheless, in this case the fraction of these long-range interactions tends to zero in the
thermodynamic limit [5], and there is no phase transition at non-zero temperature [6].

In the subsequent discussion, we consider the one-dimensional Ising model with a short-
range interaction J and random long-range interactions Iij acting between a small number
pkN/4 pairs (i, j) of spins, where k is the coordination number (k = 2 for the one-dimensional
Ising model) and p is the average number of long-range interaction per site.

Hence, the Hamiltonian H of N spins in the external magnetitic field B with periodic
boundary conditions has the form

H = −
N∑
i=1

Jσiσi+1 −
N∑
i>j

Iij σiσj − B

N∑
i=1

σi. (1)
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The probability distribution for the Iij is given by

P(Iij ) = p

N
δ
(
Iij − I

)
+
(

1 − p

N

)
δ(Iij ). (2)

For definiteness, we assume that all interactions are ferromagnetic, J, I > 0. For p = 0
(ordered system), no phase transition takes place in the one-dimensional case, while such a
transition (with the so-called Ising critical indices) exists in two–three dimensions. On the
other hand, for p = N (fully disordered system), the phase transition (with the so-called
mean-field critical indices) exists both in one and in two–three dimensions.

The Erdos–Renyi theorem for the random graphs [7] (which are slightly different from
the small-world networks [8]) establishes that long-range order appears at p � 1 (and not
p � N). Hence, one expects that the same phenomenon will occur for small-world networks.
Indeed, in a recent paper [8], Barrat and Weigt have shown that in the absence of the short-
range interaction (J = 0 in (1)) long-range order appears at a temperature T ≈ − k(k+2)

4 lg(p) for
small p. In other words, in order to obtain a phase transition at non-zero temperatures in the
one-dimensional Ising system, there is no need for a long-range Kac potential acting among
all spins—it is sufficient to have a small number of random long-range interactions, and they
will ensure (small-world effect!) the appearance of long-range order.

Studies of the influence of the long-range interactions on the Ising systems have a long
history that goes back to the 1960–70s [9, 10]. At the same time, some interest was shown in the
dilute ferromagnet which was expressed by consideration of random short-range interactions
[12, 13]. Finally, both long-range interactions and random short-range interactions are a subject
of study in spin-glass theory [14]. Our method of analysis of the Hamiltonian (1) is similar
to those mentioned above, although we are interested in the slightly different case of random
long-range interactions.

The random systems described by the Hamiltonian (1) can have two different types of
thermodynamic behaviour [15], the annealed case when the interactions between spins are able
to reach thermal equilibrium at each temperature, and the quenched case when the interactions
are frozen. In line with this, one has to perform an average over the random interactions in the
statistical sumZ = − exp (−H/κT ) for the annealed case, or in the free energyF = −κT ln Z

for the quenched case. In fact, the annealed free energy presents a lower bound for the free
energy for the following reason. In this case the bonds can arrange themselves to minimize
the free energy, while in the quenched case the bonds are frozen and, therefore, are unable to
choose the energetically most favourable positions.

We start with the simpler although physically less common annealed case. The exact
solution is given in section 2. Section 3 contains an approximate solution of the annealed case
which is used in section 4 for the analysis of the quenched case. Finally, some conclusions are
presented in section 5.

2. Annealed case: exact solution

For the annealed case, one can use a thermodynamic rather than the statistical-mechanical
approach which was used [12, 13] for the analysis of dilute ferromagnets. Let us write in the
following form the Hamiltonian H of N spins in an external magnetic field B:

H = −J

N∑
i=1

σiσi+1 − I

N∑
i,j

µijσiσj − B

N∑
i=1

σi (3)

where the random variable µij denotes the presence (µij = 1) or the absence (µij = 0) of a
long-range interaction between sites i and j , while the fraction of these interactions is equal
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to p, ∑
bonds µij

N
= p. (4)

The thermodynamic behaviour of the system is defined by the grand canonical partition
function with pseudo-chemical potential ξ,

� (I, J, B, ξ) =
N∑

p=0

exp (βpξ)Trσ
∑

µij=0,1

exp

[
βI

∑
bonds

µijσiσj +
N∑
i=1

β (Jσiσi+1 + Bσi)

]
(5)

where β = 1/κT .
The summation over µij subject to condition (4) can be performed at once,∑

µij=0,1

exp
[
µij

(
βIσiσj + βξ

)] = 1 + exp
(
βIσiσj + βξ

) ≡ A exp
(
βKσiσj

)
. (6)

The last equality in (6) allows us, with A and K suitably chosen functions of I and ξ , to
reduce our problem to the ordinary Ising problem with short- and long-range interactions (the
so-called ‘reference system’). Equation (6) is satisfied for σiσj equal to ±1 if

exp (βξ) = sinh (βK)

sinh [β(I − K)]
A = sinh (βI)

sinh [β(I − K)]
. (7)

Substituting (6) into (5), one finds

�(B, T |I, J, ξ) = AN Trσ exp

[
βK

∑
i,j

σiσj +
N∑
i=1

β (Jσiσi+1 + Bσi)

]
(8)

where the summation i, j extends over all bonds.
Due to the presence of long-range interactions in the Hamiltonian (3), the thermodynamic

behaviour described by the statistical sum (8) or by the free energy F = − 1
β

ln �, comes under
the heading of the mean field, and can be investigated by means of the Landau expansion of
the thermodynamic potential written in the appropriate variables [10].

Let us start with the case when only short-range, nearest-neighbour (nn) interactions are
present (K = 0). Then, the free energy Fnn can be calculated by the transfer-matrix technique,
which gives

βFnn(B, T ) = −βJ − ln
[
cosh (βB) +

√
sinh2 (βB) + exp (−4βJ )

]
(9)

from which the magnetic moment M conjugated to the magnetic field B is equal to [11]

M =
(
∂Fnn

∂B

)
β

= sinh (βB)√
sinh (βB) + exp (−4βJ )

. (10)

Performing the Legendre transformation of the basic thermodynamic variables M,T , one
obtains

Fnn(M, T ) = Fnn(B, T ) + MB. (11)

The classical way of taking into account the long-range interactions consists of calculating
their contribution to the energy of a state when one has n ‘plus’ spins and N −n ‘minus’ spins.
Then, the energy will be

−K
[
n2 + (N − n)2 − 2n(N − n)

] = −K(N − 2n)2 = −KM2. (12)
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Combining (11) and (12), one obtains

F(M, T ) = Fnn(B, T ) + MB − KM2. (13)

The critical temperature can be found from (13) by two equivalent methods. Firstly, near
the critical point one can expand the free energy (13) in a series in M in the absence of the
external field, or, alternatively, one can obtain from (13) the following equation for the order
parameter:

M = sinh (βB + 2βKM)√
sinh (βB + 2βKM) + exp (−4βJ )

(14)

which is a natural generalization of (10).
The equation for the critical point can now be obtained by the appearance of the non-trivial

solution, M �= 0, in (14) in the absence of an external field which gives the following condition
for the critical point:

2K

Tc

exp

(
2J

κTc

)
= 1. (15)

The long-range interaction of the reference system introduced in (8) can be expressed in
terms of the strength I and the concentration p of the long-range interactions in the original
system. The concentration of the long-range interactions p is equal to the average number,
〈n〉, of the existing long-range bonds, namely

p = 〈n〉 = lim
N→∞

1

N

∂ ln �

∂ξ
= ∂ ln A

∂ξ
+ ε

∂ (βK)

∂ξ
(16)

where

ε ≡ lim
N→∞

1

N

〈
∂ ln

[
exp

∑
i,j (βKσiσj )

]
∂(βK)

〉
= 〈σiσj 〉 (17)

is the 2-spin correlation function of the reference system.
Using (7), one can rewrite (16) in the following form:

exp

(
2I

κT

)
= p + p2

p − p1
(18)

where

p1 = 1

2

[
1 − exp

(
−2K

κT

)]
(1 + ε) p2 = 1

2

[
exp

(
2K

κT

)
− 1

]
(1 − ε). (19)

The reference system in zero external field has a mean-field phase transition at some
T = Tc. Therefore, the original system described by the Hamiltonian (3) will have a phase
transition, if any, at T = Tc which satisfies (18). The critical temperature Tc can be expressed
in terms of the original parameters I and J by excluding the auxiliary parameter K from (15)
and (18). However, a few important conclusions can already be drawn from (18). Both p1 and
p2 are positive, and p1 < 1. Therefore, a phase transition at a non-zero temperature occurs
only for p1 < p < 1, so that p1 represents a minimum fraction of the random long-range
interactions below which no phase transition is possible.
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3. Annealed case: approximate solution

Returning to the Hamiltonian (1) and performing the average over Iij given by the distribution
(2), one obtains for the canonical statistical sum

〈Z〉I = Trσ

∫
dIijP (Iij ) exp (−βH)

= Trσ exp

(
N∑
i=1

[βJσiσi+1 + βµ0Bσi]

)∏
i,j

[
1 − p

N
+

p

N
exp

(
βIσiσj

)]

= Trσ exp

[
N∑
i=1

[βJσiσi+1 + βµ0Bσi] +
∑
i,j

ln
(

1 +
p

N

[
exp

(
βIσiσj

)− 1
])]

(20)

where the obvious identity
∏

i,j . . . = exp
∑

i,j ln . . . has been used in the last part of
equation (20).

One can rewrite the last exponent in (20) in the following form:

exp (βI) σiσj = cosh (βI)
[
1 + σiσj tanh (βI)

]
. (21)

Substituting (21) into (20) and expanding the logarithm in a series in p/N , one finds

〈Z〉I = Trσ exp

[∑
i

[βJσiσi+1 + βµ0Hσi] +
p

N
(cosh βI − 1) +

p sinh βI

N

∑
i,j

σiσj

]
(22)

where only terms linear in p/N were retained in the expansion of the logarithm in the series
since only these terms contribute extensively to the free energy.

The final step in the calculation will be the transformation of the sum over i, j in (22) in
the form

∑
i,j σiσj = 1

2

(∑
i σi

)2 − N/2, and the use of the relation

exp

[
p sinh βI

2N

(∑
i

σi

)2]
=

√
2√

Nπ

∫ ∞

−∞
dϕ exp

[
−φ2N

2
+
√
p sinh βI

∑
i

σiφ

]
(23)

which gives

〈Z〉I =
√

2√
Nπ

∫ ∞

−∞
dφ exp

(−φ2/2
)

× Trσ exp

[
β
∑
i

[
Jσiσi+1 + µ0Hσi

]
+
√
p sinh βI

∑
i

σiφ

]
. (24)

The transfer-matrix technique allows us to perform the summation over σ (Trσ in (24))
by replacing this summation by the product of N 2 × 2 matrices of the form(

exp
[
βJ + φ

√
p sinh βI + βµ0B

]
exp

[−βJ + φ
√
p sinh βI + βµ0B

]
exp

[−βJ − φ
√
p sinh βI − βµ0B

]
exp

[
βJ − φ

√
p sinh βI − βµ0B

]
)

(25)

which results in

〈Z〉I =
√

2√
Nπ

∫ ∞

−∞
dφ exp

(−φ2N/2
) {

exp (βJ ) cosh
(
φ
√
p sinh βI + βµ0B

)
+
[
exp(2βJ ) sinh2(φ√p sinh βI + βµ0B

)
+ exp(−2βJ )

]1/2
}N

≡
∫ ∞

−∞
dφ
[
exp(−φ2/2)λ(φ)

]N
. (26)
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Since we will finally pass to the thermodynamical limit N → ∞, the latter integral can be
evaluated by the method of steepest descent. The saddle point(s) are defined by the condition
d

dφ

[
exp(−φ2/2)λ(φ)

] = 0 which has only one root φ = 0, or an additional root defined by
the following condition:

φ = sinh
(
φ
√
p sinh βI + βµ0B

)
[
sinh2 (φ√

p sinh βI + βµ0B
)

+ exp (−4βJ )
]1/2 . (27)

In the absence of an external field, B = 0, equation (27) has a single solution
φ = 0 for p exp (βJ ) sinh (βI) < 1, and an additional solution φ = φ(I, J, p) �= 0 for
p exp (βJ ) sinh (βI) > 1. Clearly, the critical point Tc is defined by the following condition:

exp

(
J

κTc

)
sinh

(
I

κTc

)
= 1

p
. (28)

There is no phase transition (Tc → 0) in the absence of random long-range interactions
(p → 0), while in the absence of the short-range interactions (J = 0), the critical point is
defined by the following condition:

Tc = − J

κ ln
[
p/(1 +

√
1 + p2)

] . (29)

For the equistrength case (I = J ) the critical point is equal to

Tc = − J

κ ln
[
2/(1 +

√
1 + 8/p)

] . (30)

Note that for p � 1, equations (29) and (30) have different limiting forms,

Tc|J=0 � − J

κ ln (p/2)
Tc|J=I � − 2J

κ ln (p/2)
. (31)

For the free energy βF = − limN→∞ 1
N

ln〈Z〉I , one obtains

βF =
∫ ∞

−∞
dφ
{

1
2φ

2p sinh βJ − ln
[
exp (βJ ) cosh

(
φ
√
p sinh βI + βµ0B

)
+
[
exp(2βJ ) sinh2(φ√p sinh βI + βµ0B

)
+ exp(−2βJ )

]1/2]}
. (32)

The free energy above the critical point is defined by the saddle point φ = 0, which gives
for B = 0, the well known result for the one-dimensional Ising system βF = − ln (2 coth βJ ),
while below the critical point, one has to use the saddle point defined by (32).

The energy per site can be found from the free energy (32) using the well known
thermodynamic relation E = ∂

∂β
(βF ), which gives for H = 0,

E = −J tanh βJ for T > Tc (33)

and

E = J

[
2φ2 exp (−4βJ )

sinh
(
φ
√
p sinh βI

) [
sinh

(
φ
√
p sinh βI

)
+ φ cosh

(
φ
√
p sinh βI

)] − 1 − φ2

2

]

for T < Tc. (34)

As one can see from these equations, random long-range interactions induce the phase
transition at T = Tc, while for high temperatures, T > Tc, the internal energy is defined only
by the short-range interactions.
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Using (27) and (28), one can see that the energy is continuous at the critical point and
equal to −J κTc−2J

κTc+2J . On the other hand, the specific heat C = dE
dT has a finite jump at the critical

point. From the free energy (32), one can also find the other critical indices and confirm that,
as expected, the phase transition is of the second order with the mean-field critical indices.

Comparing the results of the two preceding sections, one concludes that the approximate
method of section 3 missed an important result for the exact solution for the annealed case,
namely, the existence of the lower limit for the concentration of long-range interactions below
which no phase transition occurs.

4. Quenched case

In the quenched case, one has to perform the average over distribution (2) of ln Z, rather than
of Z, as we did in previous sections for the annealed case. To this end, one has to use the
so-called replica method [16], according to which one considers the n replicas σα

i = ±1 of
each original σi and uses the following identity:

〈ln Z〉J = lim
n→0

〈Zn〉J − 1

n
. (35)

Introduction of different replicas in (20) immediately yields

〈Zn〉J = Trσ exp

{∑
α

N∑
i=1

[
βJσα

i σ
α
i+1 + βµ0Bσα

i

]

+
∑
i,j

ln

(
1 +

p

N

[
exp

∑
α

(βIσα
i σ

α
j ) − 1

])}
(36)

where an additional summation over α = 1, 2, . . . , n is added.
The following procedure [17] is similar to that performed in the previous section.

Transforming the last exponent in (36) for each α according to (21), substituting back in
(36) and expanding the logarithm in a series in p/N , one finds instead of (22) the following
expression:

〈Zn〉J = Trσ exp
∑

α,α1,α2,...

{ N∑
i=1

[
βJσα

i σ
α
i+1 + βµ0Bσα

i

]

+
p

N

∑
i,j

[
(a0 − 1) + a1σ

α
i σ

α
j + a2σ

α
i σ

α
j σ

α1
i σ

α1
j + a3σ

α
i σ

α
j σ

α1
i σ

α1
j σ

α2
i σ

α2
j + · · ·]}

(37)

where

lim
n→0

am = lim
n→0

[
coshn (βJ ) tanhm (βJ )

] = tanhm (βJ ). (38)

Equation (38) reduces to (21) when n = 1 and m = 0, 1.
The next step is analogous to the transition from (22) to (27). Using the transformation

(23) for each term in the summation over α, α1, α2, . . . in (37), one obtains

〈Zn〉J =
∫

dq exp [−Nf (q)] (39)
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where

f (q) = pa1

2

∑
α

q2
α +

pa2

2

∑
α,α1

q2
αα1

+ · · ·

− ln Trσ exp

[∑
α,α1...

[βJσασα+1 + βµ0Bσα
i + pa1qασα + pa2qαα1σασα1 + · · ·]

]

(40)

where the variables σα represent n spins at the same site.
In contrast to (26), the last equation contains a series of order parameters q ≡ [qα, qαα1...

]
.

The integral in (39) can be found by the method of steepest descent analogously to (26) and
(27). The average free energy (35) is then derived by minimization with respect to qα, qα,α1 . . .

and by taking the limit n → 0. The general analysis is quite complicated, and it was performed
either close to the phase transition point, where the situation becomes similar to the spin glasses
and only two order parameters are important [17], or for low temperatures, where all order
parameters are of the same amplitude [18, 19].

The details apart, an existence alone of phase transition in the quenched system with the
random long-range interactions is important for our purposes. Another interesting question
is the existence of a minimal average number p1 of these interactions per site needed for the
appearance of a phase transition. It turns out [17, 19] that p1 = 1. The latter result is connected
with the theory of random graphs mentioned in section 1 [7], and, probably, does not depend
on the dimensionality of the system, but is determined rather by the percolation: for p < 1
and N → ∞ there is no macroscopic cluster of spins (no percolation), and hence no phase
transition.

5. Conclusions

The Ising system with short-range and random long-range interactions has been considered
by known methods in connection with recent intense interest in small-world networks. An
analysis of a one-dimensional system confirms the main, intuitively clear result of Watts and
Strogatz [1]: even a small amount of random long-range interactions drastically increases the
connection between distant sites, which means, in the language of physics, the appearance of
a phase transition.

It is common knowledge that the phase transition in a one-dimensional Ising system occurs
for long-range infinitely small interactions between spins. The small-world approach shows
that in order to obtain a phase transition, it is enough to have a small fraction (of the order of
1/N ) of random interactions of a finite, distance-independent interactions of finite strength.

For physical systems, one has to distinguish between two types of long-range interactions.
If the additional interaction between spins originated, say, from free electrons, then these
interactions, like the spins themselves, are able to reach thermal equilibrium (annealed case).
If, on the other hand, the additional interactions come, say, through impurities, then it is frozen
(quenched case). We have considered these two cases separately and found that for both of
them the appearance of phase transitions requires a minimal average number of long-range
interactions per site, pmin, with pmin < 1 for the annealed case, and pmin � 1 for the quenched
case. While the last result is probably correct for higher dimensions as well, our analysis was
restricted to one dimension.

The whole situation becomes more interesting in two and three dimensions which are
described by the same Hamiltonian (1) for which each of the indices i, j is defined by two or
three numbers. Here, the phase transition already occurs in the ordered (p = 0) system and
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the appearance of a small disorder (p < 1) will result in the change of the universality class
of this transition, from Ising for p = 0 to the mean field for p �= 0. Again, the question arises
as to the dependence of the critical indices on p in the transient regime. Work on this problem
is in progress.
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